PaleoGeografia: Tectónica de Placas y la Deriva Continental. PaleoArgentina Web.
 
    El Portal Paleontologico mas completo de lengua hispana. Gracias por visitarnos y esperamos su colaboracion.
 

PaleoArgentina Web - Portal Paleontológico

I Pagina Principal I Presentación I Agregar en Mis Favoritos I Imprimir  I Copyright  I Correo I Colabore I Gmail I Grupo Paleo

Esta información debe ser considerada dentro del marco de la divulgación científica e informativa para público en general, no especializado, aficionado, técnico o profesional. Este contenido debe ser tomado solo como una guía educativa.

PaleoGeografia: Tectónica de Placas y la Deriva Continental.

Fragmento del Articulo; Magnussen Saffer, Mariano (2009). Paleogeografia; Tectonica de placas y deriva continental. Paleo, Boletín Paleontológico. Año 7. 40: 25 -28. marianomagnussen@yahoo.com.ar

En 1885 y basándose en la distribución de floras fósiles y de sedimentos de origen glacial, el geólogo suizo Suess propuso la existencia de un supercontinente que incluía India, África y Madagascar, posteriormente añadiendo a Australia y a Sudamérica. A este supercontinente le denominó Gondwana. En estos tiempos, considerando las dificultades que tendrían las plantas para poblar continentes separados por miles de kilómetros de mar abierto, los geólogos creían que los continentes habrían estado unidos por puentes terrestres hoy sumergidos.

El astrónomo y meteorólogo alemán Alfred Wegener (1880-1930) fue quien propuso que los continentes en el pasado geológico estuvieron unidos en un supercontinente de nombre Pangea, que posteriormente se habría disgregado por deriva continental. Su libro Entstehung der Kontinente und Ozeane (La Formación de los Continentes y Océanos; 1915) tuvo poco reconocimiento y fue criticado por falta de evidencia a favor de la deriva, por la ausencia de un mecanismo que la causara, y porque se pensaba que tal deriva era físicamente imposible.

Los principales críticos de Wegener eran los geofísicos y geólogos de los Estados Unidos y de Europa. Los geofísicos lo criticaban porque los cálculos que habían llevado a cabo sobre los esfuerzos necesarios para desplazar una masa continental a través de las rocas sólidas en los fondos oceánicos resultaban con valores inconcebiblemente altos. Los geólogos no conocían bien las rocas del hemisferio sur y dudaban de las correlaciones propuestas por el científico alemán. A pesar del apoyo de sus colaboradores cercanos y de su reconocida capacidad como docente, Wegener no consiguió una plaza definitiva en Alemania y se trasladó a Graz, en Austria, donde fue más ampliamente reconocido.

En 1937, el geólogo sudafricano Alexander Du Toit publicó una lista de diez líneas de evidencia a favor de la existencia de dos supercontinentes, Laurasia y Gondwana, separados por un océano de nombre Tethys el cual dificultaría la migración de floras entre los dos supercontinentes. Du Toit también propuso una reconstrucción de Gondwana basada en el arreglo geométrico de las masas continentales y en correlación geológica. Hoy en día el ensamble de los continentes se hace con computadoras digitales capaces de almacenar y manipular enormes bases de datos para evaluar posibles configuraciones geométricas. Sigue habiendo cierto desacuerdo en cuanto a la posición de los distintos continentes actuales en Gondwana.
 

Las Masas Continentales en distintos Periodos Geológicos. 

Cambrico 510 mill.

Ordovícico 470 mill.

 Silurico 430 mill.

Devonico 400 mill.

Carbonífero 340 mill.

Permico 300 mill.

Permico 270 mill.

Triasico 230 mill.

Jurasico170 mill

Cretácico 150 mill.

Cretácico 100 mill.

Paleoceno 60 mill.

Con todos estos conocimientos sobre la expansión del fondo marino y sobre las zonas de subducción, lo que quedaba era combinarlos en un sistema integrado de geodinámica. En la década de 1950, el geofísico canadiense J. Tuzo Wilson demostró la continuidad global de las zonas de subducción, bastante parecida a los pespuntes de una pelota de fútbol. El geólogo estadounidense Harry Hammond Hess señaló que, si el fondo oceánico se separaba en un lado del globo, debía producirse subducción en el otro; si no, el tamaño de la Tierra aumentaría sin parar. Xavier LePichon, estudiante francés de sismología en Lamont, estudió la geometría de las placas a partir de datos sísmicos y el geofísico estadounidense Robert Sinclair Dietz tomó las pruebas de Wegener sobre la deriva continental y reconstruyó las posiciones de los continentes y de las placas continentales en fases sucesivas desde la actualidad hasta hace unos 200 millones de años. Desde entonces, la teoría de la tectónica de placas ha sido debatida, probada y extendida; se ha convertido en un nuevo paradigma y en el centro de la controversia de las ciencias geológicas.

Tectónica de placas

Según la teoría de la tectónica de placas, la corteza terrestre está compuesta al menos por una docena de placas rígidas que se mueven independientemente. Estos bloques descansan sobre una capa de roca caliente y flexible, llamada astenosfera, que fluye lentamente a modo de alquitrán caliente. Los geólogos todavía no han determinado con exactitud como interactúan estas dos capas, pero las teorías más vanguardistas afirman que el movimiento del material espeso y fundido de la astenosfera fuerza a las placas superiores a moverse, hundirse o levantarse.


El concepto básico de la teoría de la tectónica de placas es simple: el calor asciende. El aire caliente asciende por encima del aire frío y las corrientes de agua caliente flotan por encima de las de agua fría; el mismo principio se aplica a las rocas calientes que están bajo la superficie terrestre: el material fundido de la astenosfera, o magma, sube hacia arriba, mientras que la materia fría y endurecida se hunde cada vez más hacia al fondo, dentro del manto; la roca que se hunde finalmente alcanza las elevadas temperaturas de la astenosfera inferior, se calienta y comienza a ascender otra vez. Este movimiento continuo y, en cierta forma circular, se denomina convección. En los bordes de la placa divergente y en las zonas calientes de la litosfera sólida, el material fundido fluye hacia la superficie, formando una nueva corteza.

Deriva continental

La teoría de la tectónica de placas no alcanzó amplia aceptación hasta las décadas de los sesenta y los setenta. Antes de esos años, la mayoría de los científicos creían que los continentes y océanos terrestres estaban fijos. A comienzos del siglo XX, el meteorólogo alemán Alfred Wegener, popularizó y actualizó una teoría de Snider (1858) afirmando que los continentes se desplazan, debido a la debilidad de la corteza oceánica; y sugirió que todos los continentes procedían de la rotura de dos supercontinentes llamados Gondwana y Laurasia que antes del mesozoico estuvieron unidos formando la Pangea, un enorme supercontinente. Hace unos 200 millones de años, la Pangea se rompió en placas distintas que lentamente se separaron entre sí, llegando a la disposición continental actual.
 

Uno de los hechos más evidentes que convenció a Wegener fue el encaje casi perfecto entre la costa oriental de América del Sur y la costa occidental de África, lo que es muy evidente cuando se ve por primera vez un globo o mapa del mundo. Para apoyar su teoría, señaló que las formaciones rocosas de los lados opuestos del Océano Atlántico -en Brasil y África occidental- coinciden en edad, tipo y estructura. También, las formaciones contienen fósiles de las mismas especies terrestres, de manera que América del Sur y África debían haber estado conectadas anteriormente.

En años posteriores, los descubrimientos científicos empezaron a apoyar los aspectos fundamentales de la teoría de Wegener. Los geólogos demostraron la existencia de un débil movimiento de la astenosfera, que está por debajo de la corteza, a profundidades de 50 a 150 km. Además, los científicos en la década de los años veinte utilizaron el sonar, un dispositivo de sonda de eco, para determinar las profundidades del océano y levantar un mapa del fondo marino, y llegaron a la conclusión que la Dorsal Media del Atlántico, descubierta en el siglo XIX, era parte de un sistema de cordilleras oceánico mundial. Toda esta teoría ha sido sustituida por la hipótesis mucho más sofisticada de la tectónica de placas.

Expansión oceánica

Los indicios adicionales de la tectónica de placas llegaron en las décadas de los cincuenta y los sesenta. Durante este periodo, los científicos descubrieron que todos los fragmentos de rocas conservan un tipo de disposición magnética cuando éstas se forman. Los geofísicos también conocieron que el campo magnético terrestre ha oscilado pues el polo norte magnético, que en la actualidad se sitúa junto al polo norte geográfico, ha estado en otras épocas en el polo sur geográfico; estas inversiones tienen lugar aproximadamente cada dos millones de años. Con este conocimiento, examinaron ambos lados de las cordilleras oceánicas y encontraron que las rocas de un lado de la cordillera producían una disposición geomagnética opuesta a la de las rocas del otro lado, como si se tratara de la imagen de un espejo.
 

Las rocas más cercanas a la cresta de la cordillera eran relativamente jóvenes, pero a medida que aumentaba la distancia, la edad de las rocas era más antigua. Además, los sedimentos marinos eran bastante más densos y más antiguos cuanto más alejados de la cordillera, mientras que la cordillera misma no tenía prácticamente depósitos sedimentarios. Estas observaciones, añadidas a aquellas sobre la circulación del flujo incandescente en la dorsal, confirmaron la creación de corteza nueva en la dorsal centro-oceánica y el mecanismo de expansión oceánica, por el cual se puede afirmar que el fondo oceánico es más antiguo cuanto más próximo se halla al continente.

Después que la roca fundida alcanza el fondo marino como lava, el agua fría del fondo del mar rápidamente enfría y consolida el material. Para hacer sitio a esta adición continua de nueva corteza, las placas de cualquier lado de la cordillera deben separarse constantemente. En el Océano Atlántico norte, el grado de movimiento de cada placa es sólo de 1 a 2 cm al año. Sin embargo, en el Océano Pacífico puede ser de más de 10 cm al año.

Subducción

La Fosa de las Marianas, al este de las Islas Marianas en la zona occidental del Océano Pacífico, es la zona de fondo marino más profunda del mundo a 11.033 m. La Fosa de las Marianas es una de las muchas profundas fosas océanicas formadas por los procesos geológicos de subducción. Durante este proceso, los bordes de las placas sufren una subducción, es decir, se introducen por debajo del borde de otra placa, generalmente de naturaleza continental. La corteza oceánica es impulsada dentro del manto y parcialmente fundida.

Un efecto importante de la fusión de la corteza oceánica es la producción de nuevo magma. Cuando la corteza oceánica se funde tras la subducción, el magma que forma puede elevarse desde el plano de subducción profundo, dentro del manto, saliendo mediante erupciones a la superficie de la Tierra. Por este mecanismo se han creado cadenas de islas volcánicas alargadas y en forma de arco, como Japón, Filipinas y las Islas Aleutianas. Cuando una placa oceánica se introduce por debajo de la corteza continental, el magma producido por la fusión, en la subducción, brota en los volcanes situados en las cadenas montañosas largas y alineadas paralelas a la costa, como la Cordillera de los Andes de América del Sur.

Bordes de las placas

Las placas son, pues, grandes fragmentos de la litosfera en continuo movimiento unos respecto a otros. Los continentes forman parte de esas placas y se mueven con ellas. Se pueden distinguir 17 placas (ver índice de placas), limitadas por bordes, donde se concentra todo el movimiento de las placas adyacentes, la actividad sísmica y el vulcanismo. Muchos bordes de placa están situados en el centro del océano. Hay tres tipos de bordes de placa: divergente, convergente y transformado.
 

Los bordes divergentes (también conocidos como constructivos) existen allí donde las placas se desplazan en direcciones opuestas una de otra, separándose por el material incandescente que asciende desde la astenosfera para rellenar las fracturas abiertas. Una fuerza adicional implicada en la divergencia puede ser la subducción de la corteza más pesada, antigua y densa del extremo opuesto de cada borde divergente: como el borde pesado se hunde, arrastra al resto de la placa con él, abriendo la línea de divergencia. Los bordes divergentes se localizan tanto en los fondos oceánicos como en la superficie de los continentes y dan lugar a unas estructuras muy características llamadas dorsales oceánicas y fosas tectónicas.

Las dorsales oceánicas son cordilleras submarinas que se extienden y ramifican a través de todos los oceános. En ocasiones experimentan grandes desplazamientos horizontales, de forma que su trazado no es continuo sino que está fallado; partes de estas dorsales son bastante altas y sobresalen por encima de la superficie oceánica, en lugares como Islandia en el Océano Atlántico norte. Las fosas tectónicas son zonas alargadas y estrechas, en las que la corteza continental está hundida con relación a las áreas adyacentes. El ejemplo más interesante es el Rift Valley, que se extiende a lo largo de 4.830 km desde Siria hasta Mozambique, desde los Taurus hasta el río Zambeze. La divergencia ha causado que la corteza terrestre adelgace y caiga a lo largo de este borde de placa.

 

Teoría de Tectónica de Placas . En una simpática animación, que muestra la teoría científica de la Teutónica de Placas. Fuente; Proyecto G - Canal Encuentro.


Un borde en el que dos placas colisionan y se pierde fondo oceánico por inmersión es un borde convergente o destructivo. Cuando una placa oceánica, como la Placa de Nazca que se desplaza hacia el este bajo la zona suroriental del Océano Pacífico, encuentra un borde continental como América del Sur, la corteza oceánica más densa y pesada se introduce debajo de la placa continental y se fusiona parcialmente. Los terremotos pueden suceder en estos márgenes de placa a lo largo del plano de deslizamiento o plano de Benioff, moviendo las placas hacia arriba 5 m en una sola sacudida. Si chocan dos placas oceánicas se origina un arco de islas volcánico, o una fosa oceánica como las de Chile, Japón, Taiwan, Filipinas, Nueva Zelanda y Isla de Sumatra. Cuando colisionan dos placas continentales, la corteza de ambas empuja hacia arriba, creando cadenas montañosas. La colisión de la India con el continente asiático formó el Himalaya. De hecho, la cordillera montañosa crece hoy en altura a causa de que la India y Asia todavía convergen.

En un borde de transformación, las placas se desplazan cada una en direcciones opuestas lateralmente entre sí, sin crear ni destruir fondo oceánico. Una pequeña actividad volcánica acompaña a los bordes de transformación, pero se pueden dar terremotos grandes o de poca intensidad. La Falla de San Andrés en California, Estados Unidos, es el ejemplo más famoso de este tipo de bordes.

La revolucionaria teoría de la tectónica de placas forma la base del pensamiento de la geología moderna y explica muchas de las formas terrestres actuales además del movimiento de los continentes. Esta teoría también proporciona una explicación para muchos de los terremotos y volcanes del mundo. La mayoría de los terremotos y erupciones volcánicas ocurren cerca de los márgenes de las placas. Desgraciadamente, existen muchas ciudades grandes situadas en los bordes de las placas, como ocurre a lo largo del Cinturón de Fuego, una zona de intensa actividad volcánica y sísmica que rodea el Océano Pacífico. Los seres humanos sufren repetidamente los efectos de estas manifestaciones a menudo catastróficas de la actividad tectónica.

 

Bibliografía Sugerida.

Durstling Hans (1997): Abraham Gesner: A father of petroleum Part I and Part II.

The Eclectic Lapidary. Volume I number 6. 5/01/97, y Volume I number, 7, 6/01/97.

Samuel T. Pees (2004): Benjamín Silliman Jr. Oil History.

Susana Chow Pangtay (1998): Historia del Petróleo. Petróleo y Sociedad.

Golovanov Yaroslav (1990): Semblanza de grandes hombres de ciencias. Diesel (1858 –1913). P.59 –64. Editorial Progreso. Moscú.

Bellies Mary (2004): Duryea Brothers. The History of Cars.

Lemelson - MIT Program (2000): Eli Whitney (1765 – 1825). Massachusetts Institute of Technology. MIT School of Engineering.

Echarri Prim Luis (2005): El petróleo y el gas natural. Tema 7: Energía. Libro electrónico "Ciencias de la Tierra y el Medio Ambiente

Rybbert Arens Jessica (2000): El Mercado del Petróleo. Petróleo y gas natural. Situación Mundial. Centro de Computación. Facultad de Física y Matemáticas. Universidad de Chile.

National Inventors Hall of Fame: William Meriam Burton. National Inventors Hall of Fame

National Inventors Hall of Fame: Eugene Houdry (1892 – 1962). National Inventors Hall of Fame

 

Usted es el visitante numero que consulta esta sección.


En tu hogar

Formato PDF

Archivo

Tu Homepage

En tu mail

En tu PDA
Bajar Zip   Imprimir
RSS

Volver a la Pagina Anterior 

^ Arriba

Pagina Principal del Grupo Paleo

Principal PaleoArgentina Agregar en Mis Favoritos Contáctese a PaleoArgentina

Copyright  ©  2001 - PaleoArgentina Web. Pagina de Divulgación Científica del Grupo Paleo Contenidos Educativos. Aviso Legal Pagina Abierta a toda la comunidad. Todos los derechos reservados.  www.grupopaleo.com.ar/paleoargentina/.

 

Política de privacidad   Objetivos   Declaración de responsabilidad   Aviso Legal   Colaboraciones   Contactos   Salir

 

En tu Facebook

se el primero de tus amigos

 
 

It selects Language

 

+  idiomas / + Language

 
 

 

 

 

 

Queres agregar algo o notificar un error? -   PaleoArgentina es un lugar abierto a toda la comunidad científica, técnica y aficionados. grupopaleo@gmail.com

Aviso Legal

 

 

 

 
Grupo Paleo
PaleoArgentina
Agregar a Mis Favoritos 
Presentación
Objetivos
Colaboraciones
Copyright 
Política de privacidad 
Declaración de responsabilidad 
Aviso Legal
 

Buscanos en

como

 
Introducción
PaleoGuia
Precámbrico
Paleozoico
Triasico
Jurasico
Cretácico
Paleoceno
Eoceno
Oligoceno
Mioceno
Plioceno
Pleistoceno
Holoceno
Bibliografía
 

 
Paleo Pioneros
Paleo Lectores
Paleo Divulgación
Paleo Instituciones
Paleo Exposiciones
Paleo Congresos
Paleo Resúmenes
Paleo Bibliografía
Paleo Turismo
Paleo Web Site
Paleo Climatología
Paleo Internacional
Paleo Hemeroteca
Paleo Glosario
Paleo Videos
Paleo Animatrónica
 

 
Sabias que?
Tiempo Geológico
Donde Estudiar 
Para los mas pequeños
El origen de la vida
Ingreciones Marinas
Estampillas Fósiles
Nuestros Artistas
Antartida - Antartica
Documentales y.....
Principales Yacimientos
Apuntes Universitarios
Paleo Escolar
Preguntas Frecuentes
Ley de Protección
Geografía Continental
Combustibles Fósiles
 

 

 

 

 

 

EXTRAER, ROMPER, APROPIARSE O VENDER FÓSILES ESTA PENALIZADO!!!

>>Ver Ley